Clases de redes

  •  Topologia irregular

Redes LAN Ethernet :

Ethernet es la tecnología de red LAN más usada, resultando idóneas para aquellos casos en los que se necesita una red local que deba transportar tráfico esporádico y ocasionalmente pesado a velocidades muy elevadas. Las redes Ethernet se implementan con una topología física de estrella y lógica de bus, y se caracterizan por su alto rendimiento a velocidades de 10-100 Mbps.

El origen de las redes Ethernet hay que buscarlo en la Universidad de Hawai, donde se desarrollo, en los años setenta, el Método de Acceso Múltiple con Detección de Portadora y Detección de Colisiones, CSMA/CD (Carrier Sense and Multiple Access with Collition Detection), utilizado actualmente por Ethernet. Este método surgió ante la necesidad de implementar en las islas Hawai un sistema de comunicaciones basado en la transmisión de datos por radio, que se llamó Aloha, y permite que todos los dispositivos puedan acceder al mismo medio, aunque sólo puede existir un único emisor encada instante. Con ello todos los sistemas pueden actuar como receptores de forma simultánea, pero la información debe ser transmitida por turnos.

El centro de investigaciones PARC (Palo Alto Research Center) de la Xerox Corporation desarrolló el primer sistema Ethernet experimental en los años 70, que posteriormente sirvió como base de la especificación 802.3 publicada en 1980 por el Institute of Electrical and Electronic Engineers (IEEE).

Las redes Ethernet son de carácter no determinista, en la que los hosts pueden transmitir datos en cualquier momento. Antes de enviarlos, escuchan el medio de transmisión para determinar si se encuentra en uso. Si lo está, entonces esperan. En caso contrario, los host comienzan a transmitir. En caso de que dos o más host empiecen a transmitir tramas a la vez se producirán encontronazos o choques entre tramas diferentes que quieren pasar por el mismo sitio a la vez. Este fenómeno se denomina colisión, y la porción de los medios de red donde se producen colisiones se denomina dominio de colisiones.

Una colisión se produce pues cuando dos máquinas escuchan para saber si hay tráfico de red, no lo detectan y, acto seguido transmiten de forma simultánea. En este caso, ambas transmisiones se dañan y las estaciones deben volver a transmitir más tarde.

Para intentar solventar esta pérdida de paquetes, las máquinas poseen mecanismos de detección de las colisiones y algoritmos de postergación que determinan el momento en que aquellas que han enviado tramas que han sido destruidas por colisiones pueden volver a transmitirlas.

 

 

 

 

 

 

 

Transmisión broadcast en redes Ethernet

 

 

 

 

Existen dos especificaciones diferentes para un mismo tipo de red, Ethernet y IEEE 802.3. Ambas son redes de broadcast, lo que significa que cada máquina puede ver todas las tramas, aunque no sea el destino final de las mismas. Cada máquina examina cada trama que circula por la red para determinar si está destinada a ella. De ser así, la trama pasa a las capas superiores para su adecuado procesamiento. En caso contrario, la trama es ignorada.

Ethernet proporciona servicios correspondientes a las capas física y de enlace de datos del modelo de referencia OSI, mientras que IEEE 802.3 especifica la capa física y la porción de acceso al canal de la capa de enlace de datos, pero no define ningún protocolo de Control de Enlace Lógico.

Ethernet es una tecnología de broadcast de medios compartidos. El método de acceso CSMA/CD que se usa en Ethernet ejecuta tres funciones:

  1. Transmitir y recibir paquetes de datos.

  2. Decodificar paquetes de datos y verificar que las direcciones sean válidas antes de transferirlos a las capas superiores del modelo OSI.

  3. Detectar errores dentro de los paquetes de datos o en la red.

 

Tanto Ethernet como IEEE 802.3 se implementan a través de la tarjeta de red o por medio de circuitos en una placa dentro del host.

Formato de trama Ethernet

Según hemos visto, los datos generados en la capa de aplicación pasan a la capa de transporte, que los divide en segmentos, porciones de datos aptas para su transporte por redes, y luego van descendiendo por las sucesivas capas hasta llegar a los medios físicos. Conforme los datos van bajando por la pila de capas, paso a paso cada protocolo les va añadiendo una serie de cabeceras y datos adicionales ;necesarios para poder ser enviados a su destino correctamente. El resultado final es una serie de unidades de información denominadas tramas, que son las que viajan de un host a otro.

La forma final de la trama obtenida, en redes Ethernet, es la siguiente:

                                Trama Ethernet

 

Y los principales campos que la forman son:

                                   Campos de la trama Ethernet

  • Preámbulo: Patrón de unos y ceros que indica a las estaciones receptoras que una trama es Ethernet o IEEE 802.3. La trama Ethernet incluye un byte adicional que es el equivalente al campo Inicio de Trama (SOF) de la trama IEEE 802.3.

  • Inicio de trama (SOF): Byte delimitador de IEEE 802.3 que finaliza con dos bits 1 consecutivos, y que sirve para sincronizar las porciones de recepción de trama de todas las estaciones de la red. Este campo se especifica explícitamente en Ethernet.

 

 

  • Direcciones destino y origen: Incluye las direcciones físicas (MAC) únicas de la máquina que envía la trama y de la máquina destino. La dirección origen siempre es una dirección única, mientras que la de destino puede ser de broadcast única (trama enviada a una sola máquina), de broadcast múltiple (trama enviada a un grupo) o de broadcast (trama enviada a todos los nodos).

  • Tipo (Ethernet): Especifica el protocolo de capa superior que recibe los datos una vez que se ha completado el procesamiento Ethernet.

  • Longitud (IEEE 802.3): Indica la cantidad de bytes de datos que sigue este campo.

  • Datos: Incluye los datos enviados en la trama. En las especificación IEEE 802.3, si los datos no son suficientes para completar una trama mínima de 64 bytes, se insertan bytes de relleno hasta completar ese tamaño (tamaño mínimo de trama). Por su parte, las especificaciones Ethernet versión 2 no especifican ningún relleno, Ethernet espera por lo menos 46 bytes de datos.

  • Secuencia de verificación de trama (FCS): Contiene un valor de verificación CRC (Control de Redundancia Cíclica) de 4 bytes, creado por el dispositivo emisor y recalculado por el dispositivo receptor para verificar la existencia de tramas dañadas.

Cuando un paquete es recibido por el destinatario adecuado, les retira la cabecera de Ethernet y el checksum de verificación de la trama, comprueba que los datos corresponden a un mensaje IP y entonces lo pasa a dicho protocolo para que lo procese. El tamaño máximo de los paquetes en las redes Ethernet es de 1500 bytes.

Tipos de redes Ethernet :

                                             Variedades de redes Ethernet

Existen por lo menos 18 variedades de Ethernet, relacionadas con el tipo de cableado empleado y con la velocidad de transmisión.

Las tecnologías Ethernet más comunes y más importantes las son:

  • Ethernet 10Base2. Usa un cable coaxial delgado, por lo que se puede doblar más fácilmente, y además es más barato y fácil de instalar, aunque los segmentos de cable no pueden exceder de 200 metros y 30 nodos. Las conexiones se hacen mediante conectores en T, más fáciles de instalar y más seguros.

  • Ethernet 10Base5. También llamada Ethernet gruesa, usa un cable coaxial grueso, consiguiendo una velocidad de 10 Mbps. Puede tener hasta 100 nodos conectados, con una longitud de cable de hasta 500 metros. Las conexiones se hacen mediante la técnica denominada derivaciones de vampiro, en las cuales se inserta un polo hasta la mitad del cable, realizándose la derivación en el interior de un transceiver, que contiene los elementos necesarios para la detección de portadores y choques. El transceiver se une al computador mediante un cable de hasta 50 metros.

  • Ethernet 10Base-T. Cada estación tiene una conexión con un hub central, y los cables usados son normalmente de par trenzado. Son las LAN más comunes hoy en día. Mediante este sistema se palian los conocidos defectos de las redes 10BAse2 y 10Base5, a saber, la mala detección de derivaciones no deseadas, de rupturas y de conectores flojos. Como desventaja, los cables tienen un límite de sólo 100 metros, y los hubs pueden resultar caros.

  • Ethernet 10Base-FX. Basada en el uso de fibra óptica para conectar las máquinas, lo que la hace cara para un planteamiento general de toda la red, pero idónea para la conexión entre edificios, ya que los segmentos pueden tener una longitud de hasta 2000 metros, al ser la fibra óptica insensible a los ruidos e interferencias típicos de los cables de cobre. Además, su velocidad de transmisión es mucho mayor.

  • Fast Ethernet. Las redes 100BaseFx (IEEE 802.3u) se crearon con la idea de paliar algunos de los fallos contemplados en las redes Ethernet 10Base-T y buscar una alternativa a las redes FDDI Son también conocidas como redes Fast Ethernet, y están basadas en una topología en estrella para fibra óptica. Con objeto de hacerla compatible con Ethernet 10Base-T, la tecnología Fast Ethernet preserva los formatos de los paquetes y las interfaces, pero aumenta la rapidez de transmisión hasta los 100 Mbps.

En la redes Fast Ethernet se usan cables de cuatro pares trenzados de la clase 3, uno de los cuales va siempre al hub central, otro viene siempre desde el hub, mientras que los otros dos pares son conmutables. En cuanto a la codificación de las señales, se sustituye la codificación Manchester por señalización ternaria, mediante la cual se pueden transmitir 4 bits a la vez. También se puede implementar Fast Ethernet con cableado de la clase 5 en topología de estrella (100BaseTX), pudiendo entonces soportar hasta 100 Mbps con transmisión full dúplex.

 

Volver Atras | Ir a Indice | Pasar a siguiente

  Todos los derechos reservados © Web optimizada para  800x600  - Diseño de Ruben Puy & Ivan Aibar -